2020

=1 Im)\

2020

Problem Packet

DO NOT OPEN THIS PACKET
UNTIL THE CONTEST BEGINS

]

=

3

=

=
s

3
g
5

38

o

o

i

&

o

T

Y

JRay

o

e
ey

et
et

L

=
o

0

S
2
x,

r

£

aEes

S
T
o
N
’:::s

ot
&
s

=

22

o
e
Py

3

\1,

R,

i
JRas
32

T

!
)

23
as
>

33
3
<
2

&

%

%

et
23
o

03
£3
P

<
A

R
5

e

e

e

3

L

£

LTS

X
o

>
¥
=
=
]

X

s

oS

5

<

oo

"

S
N
Seh

x5
r

3‘)

=

o
3

2
&

el

AN

LR

Sesisenaoat

S N 0 A 3 A 3
o AR v v A o AT RN o
345 a5k VN A ? ; AR R
AR R 4 i b AR RO
AR o N % A
AR PR 4 e b e R RS b3
e e v A { o g o o
SR R % 9 @ S ARt R 3
AR A N V. v v AR L) e AR 0
DR) 5 s s RN & YT RgN y
NSNS ¥ ¥ e NS NN o
R v v ‘ ey RN
A4 i - Ny o R
PN, ¥ v AT W v
i e e
)
R
4
4
b
#
i

3
<
3
e

34350503050 b0,

AR
g

3

i
S

)

o

=

o

3

N
i

S

SEE St

0y

3

¥

SE St
SEE bt

SEaF

L
g
=5

S5

75

A
22

3%

o

5

23

oo

e
RS

R

=

AR,

A
2
S

Lo

s
A%

S is s g i

o

3

A%
o

S8
3

o
SEE

£X
o

R0

o

o3
i

5.

e

ee

4

o
e

=

v
aiel
3

o

s A PN s
S 5 % ; 4 RS R
RS % {4 £ % RN R 5
WA G e % P R
PR i3 Vv v Lok edi e oy e > i v
SRy ? % ? BRSO R RA R A NI
RO ¢ v ¢ R RNRAAN SR
S s R NN v, N
R PR p i N i RS R NS

SRekvh e AT 9 v 9 RS Y 1
RS YAV i ¢ ¢ ,wﬁi 5 IR A

A

S

“:\1

b

i

3

o

a7
5

.

&
32
2%
£
%)
G

3
R
)
?

T
5% Sosts

s

e

S SRS St oot o
SESRSBSb b St

%

)
e

o

1
<
5

%
%

S

L
s

5

ZhoTet o

X
%h

L)

53

£

S22
<

e

1
&

5,

S

e

%

L

L

&
S
SRS

B2
%

h;‘\"

S

L)

3

o

e
2
L ds s s de S dada ds.

L
=,

i

=
5,

e

&

e

7

W

e

ey

=

IR

el

LIRSS AN
2,

)

S

5

o

A

X

g
A
A

=

-

)

2
-
< 3- da s

PR

5
3
Tiids

o

U

o

v
e
143

o
e

<

Sd-dsdsis

AR

- dndndais,

Y
bt
s

w0

S

0%

53

=

1.
¥ , : ¥ S Aty
3% 3 i o 0 I AR S YR %
N o~ ¥y) o v, N, v¥ v
m;.”.mv. Sk on e b b b b R R AR AN SRR
S A kA N, o P v N, ol ek ol e
N v, o o ¥ " S R AT e R S
o K AR A A o ; v XIR AR RS S
SN (AN N s 3 W ISR A BN BN A B
N s s ¥ ¥ W BN PSS ...«.9;.«.,., N
3 o4 i v Vo PN T A N
5o \ o b b i IR A RN RAR RS
o\ A v i AR’ oyl AR o
o ¥ o PN o IR
% A AR A A W o p3A oy 7
o ¥ 'S gt foty 'S NG ‘.«) e 9
\ Y TN fs N) N BN X
TR R RS SO ¥
e R VRSN vs e ¥ NN NN %
AR b e e b A B ¥
AT ¥ A A N ke V.
o 2 % s SIS ;
AR ¥ N, ¥ < R
TIRTSTS ¥y 3 NI TN
RIS 3 ¥ ¥ N N
IR N \ ¥ 9 «« o ,«x«_., .
PIRRNY # # 4 BRI
SRS A NS . 1 PS4
BIATARD o ¥ W SN
AR . b b i EANAN H
R 5 g ¥ : R
R R % % ¥ ¥ WO ¥
SRR % b ‘ ‘ b o
PR ¢ b i 4
AR 4 4 4 % : i
NN % iy ; %
N N, W ¥ ¥ ¥,) A
o R e oV, ¥ v v i
oy NN o W v . " e
ARV o 5 4] o
ot AN X %
R A o
R RN R R ¥ 0 v R s
N NN b R % o g W
v AR R A PR AR v i b Pt
N, RSN KRS RS * L aoK &
R R PR Lo v . xR 0%
ARy % ¥ S O
559 AN o s B 2 B %
AN R e ¥ ' 4 g v
AR YUY WA 0 o NNy o
R i A 9 >,m>m\w ;
O X I e
N A N A v R AR
o BRI v VXN, o R R
S o
.ﬂ o .“ &

o
L

S

&3
&

55
33

3

o

&

2

25

3s

ES

ks

(6303

i

&
- 3adais
e

23
23
s
o
3
)
3
2
AEAIAI LS
=

2

2
£
)
S
52

-

0
A
=

=

<

%

SEE S e
eSS e

SESESSESE S
TE 4

S3%
e
SR

o

2

%

&

2
cene

-

&

o

a3,
$3

2

53

S3ads

>,
3:

e
S
%
#

SES

Sty

ST
53
0

e

>

33
o

S

332

=
2
2

o
5
03
%
%
-
5
R

Sty

St
=
S

<

>

S
=
33

&

o

=
-

SR S e bt s

AR
P33

e

33
%
23
5235

el
25

'
T

S
3
}.5

23
o

A
St
AR

AR

ks

o

£
:
2

s

>4

Vi1

a3

3

233,
e

S bt

gheichss
SN,

SEED
i
et
LS

PESELE IS0

AR

AL ARk

SRR

o

Sy
S5

RNy
chek Kok

2

g Lk

=

BN
Yook N

RS

S

28

B3

2%

R

s
i
g

AN

27

s
a3 Sadats

s

S e e e

2

SRS R R e e e
25

S33s

R

3

3z

S

ettt

5
2

S35
SRR

e

4

S
23s
SRR

TR BRRBEBT

¢

324335

b

-3,

S

>3,

2353

=5

s

-

2%

S5

bbbttt

$533 353

SEIE

2R

Pt

SAIRERAINIAT

SEETEAATE S

SRR

Ssdaiads i

oot ot

2.

Q‘A

S iidaiads

2353
iRt

e
055

23

oy

e

3

o

%3

&

-

e
*

=

b

o

i
e

£

b

X

S

5,

b

e

s
3

S35

SRS

i3

3%

y N % %) A
R SR & ¥ 4
R o Yok " "
& v ARAS YIATH v by
AR : : ;
NN PSRN s
N AR G

.4
.3
e
552
H\.
b

2%
g
z
o

2

7
257

o
S

i

i

e

22
o
X
A

&

S

2
)
&
=
o

3

NIRRT

o
s
%

5,

55

s

S

¥

S
o
5
e
4
w
S

5

>3
S

5

o

i
o

an

=0
o

2

e

=

>
3

i

it Attt g

o

20
R

Rl
S
Eedih

O

o4
2,

2

AR

2

5,

o

i

FSERS
N

e

o
o
3
5

5
o

o

AR
28

-
=

3

s

Shaas

%

WA

o

.:,
S
v
SR
NSRS

K

2

St

25

>

=
53

B>

55535
-

B

e

SAGN

o
=

&3

By

EREY

&3

- Sisasa

SRS

oS

-

Fststctt

b2

2020

=1 1IN\

2020 Problem Packet

Problem Name Points Page
1 No More Shouting 5 7
2 Sum It Up 5 8
3 Goofy Gorillas 5 9
4 Brick House 10 10
5 Image Compression 15 11
6 Foveated Rendering 15 13
7 Time and Time Again 20 16
8 Caesar Cipher 20 18
9 Count to 10 25 20
10 | Minesweeper 25 21
11 | Homeward Bound 30 23
12 | Conway’s Game of Life 40 25
13 | Mandelbrot Set 45 28
14 | Network Ranger 50 31
15 | Hide Your Spies 55 33
16 | Evacuate! 70 36
17 | Sudoku 80 39

Frequently Asked Questions

Frequently Asked Questions

How does the contest work?

To solve each problem, your team will need to write a computer program that reads
input from the standard input channel and prints the expected output to the console.
Each problem describes the format of the input and the expected format for the output.
When you have finished your program, you will submit the source code for your
program to the contest website.

How is each problem scored?

Each problem is assigned a point value based on the difficulty of the problem. If the
outputs match exactly, you will be given the points for the problem. There is no partial
credit; your outputs must match exactly.

How are ties broken?

At the end of the contest, teams will be ranked based on the number of points they
earned from correct answers during the contest. If there is a tie for the top three
positions in either division, ties will be broken as follows:

1. Fewest problems solved (this indicates more difficult problems were solved)
2. Fewest incorrect answers (this indicates they had fewer mistakes)
3. First team to submit their last correct response (this indicates they worked faster)

EN Page 4 of 41

Rounding

Rounding

Some problems will ask you to round numbers. All problems use the “half up” method of
rounding unless otherwise stated in the problem description. Most likely, this is the sort
of rounding you learned in school, but some programming languages use different
rounding methods by default. Unless you are certain you know how your
programming language handles rounding, we recommend writing your own code
for rounding numbers based on the information provided in this section.

With “half up” rounding, numbers are rounded to the nearest integer. For example:

4. 1.49 rounds down tol
5. 1.51 rounds upto 2

The “half up” term means that when a number is exactly in the middle, it rounds to the
number with the greatest absolute value (the one farthest from 0). For example:

6. 1.5roundsupto?2
7. -1.5 rounds down to -2

Rounding errors are a common mistake; if a problem requires rounding and the contest
website keeps saying your program is incorrect, double check the rounding!

Page 5 of 41 EN

Terminology

Terminology

Throughout this packet, we will describe the inputs and outputs your programs will
receive. To avoid confusion, certain terms will be used to define various properties of
these inputs and outputs. These terms are defined below.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

EN

An integer is any whole number; that is, a number with no decimal or fractional
component: -5, 0, 5, and 123456789 are all integers.

A decimal number is any number that is not an integer. These numbers will
contain a decimal point and at least one digit after the decimal point. -1.52, 0.0,
and 3.14159 are all decimal numbers.

Decimal places refer to the number of digits in a decimal number following the
decimal point. Unless otherwise specified in a problem description, decimal
numbers may contain any number of decimal places greater or equal to 1.

A hexadecimal number or string consists of a series of one or more characters
including the digits 0-9 and/or the uppercase letters A, B, C, D, E, and/or F.
Lowercase letters are not used for hexadecimal values in this contest.

Positive numbers are those numbers strictly greater than 0. 1 is the smallest
positive integer; 0.000000000001 is a very small positive decimal number.
Non-positive numbers are all numbers that are not positive; that is, all numbers
less than or equal to O.

Negative numbers are those numbers strictly less than 0. -1 is the greatest
negative integer; -0.000000000001 is a very large positive decimal number.
Non-negative numbers are all numbers that are not negative; that is, all
numbers greater than or equal to O.

Inclusive indicates that the range defined by the given values includes both of
the values given. For example, the range 1 to 3 inclusive contains the numbers 1,
2, and 3.

Exclusive indicates that the range defined by the given values does not include
either of the values given. For example, the range 0 to 4 exclusive includes the
numbers 1, 2, and 3; 0 and 4 are not included.

Date and time formats are expressed using letters in place of numbers:

o HH indicates the hours, written with two digits (including a leading zero
when needed). The problem description will specify if 12- or 24-hour
formats should be used.

o MM indicates the minutes for times or the month for dates. In both cases,
the number is written with two digits (including a leading zero when
needed). January is month O1.

o YYorYYYY is the year, written with two or four digits (including a leading
zero when needed).

o DD is the date of the month, written with two digits (including a leading
zero when needed).

Page 6 of 41

Problem 1: No More Shouting

Problem 1: No More Shouting

Points: 5

Problem Background

It's common knowledge that on the internet, TYPING IN ALL
UPPERCASE LETTERS ISN'T VERY POLITE. It just looks like you're shouting

at people, which isn’t a very good way to hold a conversation. You've been asked to
design a browser extension that can (forcibly) calm everyone down by converting
UPPERCASE SHOUTING into lowercase whispers. Try to stay calm as you solve this
problem.

Problem Description

Your program will be given lines of text in which all letters are uppercase. You must
convert these letters to lowercase without otherwise changing the content of the text.

Sample Input

The first line of your program’s input, received from the standard input channel, will
contain a positive integer representing the number of test cases. Each test case will
include a single line of text consisting of uppercase letters, numbers, spaces, and/or
punctuation.

2
THIS SENTENCE IS IN ALL CAPS
SHOUTING ISN’T NICE.

Sample Output

For each test case, your program must output the provided string after replacing all
uppercase letters with their lowercase equivalents. Spaces, numbers, and punctuation
should not be modified.

this sentence is in all caps
shouting isn’t nice.

Page 7 of 41 EN

Problem 2: Sum It Up

Problem 2: Sum It Up

Points: 5

Problem Background

Adding up numbers is very easy, unless you add a twist. If two numbers are the same,
sum their sums!

Problem Description

Your program will be given two numbers. If they are not equal, return their sum. If they
are equal, return double their sum.

Sample Input

The first line of your program’s input, received from the standard input channel, will
contain a positive integer representing the number of test cases. Each test case will
include a single line consisting of two non-negative integers separated by spaces.

w N R U
N N W

13 13
125 9

Sample Output

For each test case, your program must output the value calculated according to the
rules described above.

4
8

5
52
134

EN Page 8 of 41

Problem 3: Goofy Gorillas

Problem 3: Goofy Gorillas

Points: 5

Problem Background

The local zoo’s most popular exhibit contains two
gorillas. However, the gorillas can cause the
zookeepers some issues. We need to be able to
alert the zookeepers of trouble in the gorilla
compound.

Problem Description

Your program will be given information about

whether each of the gorillas is smiling or not. We need to alert the zookeepers if both
gorillas are smiling (which might mean they’re causing trouble), or if neither gorilla is
smiling (which might mean they’re about to fight). If only one gorilla is smiling,
everything is probably ok.

Sample Input

The first line of your program’s input, received from the standard input channel, will
contain a positive integer representing the number of test cases. Each test case will
include a single line containing two boolean values (“true” or “false”) separated by
spaces.

2
true false
true true

Sample Output

For each test case, your program must output “true” if the zookeepers should be alerted
about potential trouble, or “false” if everything seems ok.

false
true

Page 9 of 41 EN

Problem 4: Brick House

Problem 4: Brick House

Points: 10

Problem Background

We want to build a row of bricks for our brick house that

is a certain number of inches long, and we have a number of small bricks and large
bricks with which to do it. You need to write an application that will decide if its is
possible to build this row of bricks using some or all of the given bricks. You do not need
to use all of the given bricks!

Problem Description

Your program will be given a goal length for the brick wall and the number of small and

large bricks available. Small bricks are each 1 inch long. Large bricks are 5 inches long.
You will need to determine if it is possible to build a row of bricks exactly as long as the
goal using only the available bricks.

Sample Input

The first line of your program’s input, received from the standard input channel, will
contain a positive integer representing the number of test cases. Each test case will
consist of a single line, including three non-negative integers separated by spaces:

e The first integer represents the number of small, one-inch-long bricks
e The second integer represents the number of large, five-inch-long bricks
e The third integer represents the target length of the wall, X, in inches

8
9

W w w w
N R

10

Sample Output

For each test case, your program must print a single line with the word “true” if it is
possible to build a wall of exactly X inches using only the bricks available. Otherwise, it
should print “false”.

true
false
true

EN Page 10 of 41

Problem 5: Image Compression

Problem 5: Image Compression

Points: 15

Problem Background

Images can be saved onto a computer in many
different types of file formats, each with its own
advantages and disadvantages. JPEG (or JPG)
images are commonly used for photography,
because their format allows the image
information to be compressed, reducing the size
of the file and allowing you to take more pictures.
The downside to this is that repeatedly editing a
JPEG image causes the quality of the image to
gradually get worse over time; each time the file
is saved, the existing image data is compressed
further and further, losing fine details.

The process of compressing a JPEG image is
complicated but can be broken down into several
individual steps. One of these steps is called
guantization, which takes a wide range of numbers created by a previous step in the
process and converts them to a smaller, more manageable scale. This results in some
loss of detail as previously mentioned; two different but close numbers may be
converted to the same result number. However, the human eye often cannot discern
very high-frequency changes, so this loss is usually not noticeable.

Problem Description

Your program will need to implement an example quantization algorithm that accepts
perceived brightness values and converts them to an integer value between 0 and 255
inclusive. Your program will be given a list of decimal values representing brightness
values (such as might be read by a scanner). Your program must identify the highest
(max) value and the lowest (min) value from the list of values, then convert all values in
the list to the target scale using this formula:

Input — Min

_ %
Output = Max — Min 255

All results should be rounded to the nearest integer.

Page 11 of 41 EN

Problem 5: Image Compression

Sample Input

The first line of your program’s input, received from the standard input channel, will
contain a positive integer representing the number of test cases. Each test case will
include the following lines of input:

e A positive integer, X, representing the number of values in the list
e X lines, each containing a decimal number to be converted

2

5

0.0
25.0
50.0
75.0
100.0
6
12.3
-67.1
122.8
428.4
-15.9
221.0

Sample Output

For each test case, your program must output the list of converted numbers,
maintaining the same order. Print one number per line, and round all results to the
nearest integer.

0
64
128
191
255
41

98
255
26
148

EN Page 12 of 41

Problem 6: Foveated Rendering

Problem 6: Foveated Rendering

Points: 15

Problem Background

Virtual Reality has exploded into the market in the last five years, being used for
everything from games and entertainment to product design and engineering. One of
the more recent advances in VR headset design is the addition of eye tracking to
increase performance.

The human eye has an extremely narrow field of view in which perfect 20/20 vision is
attainable and fine detail can be distinguished. This clarity of vision is due to the fovea,
a small depression in the inner retina specialized for this purpose. However, due to the
size of the fovea, the human eye can only see clearly within a field of view of less than
10°. The rest of our vision comes from the brain piecing together imagery as we look
around.

Due to this fact, a VR headset only needs to render the highest resolution imagery
directly where the user is looking. Images outside of that field of view can be rendered
at a lower quality, increasing the performance of the system.

Problem Description

You have been tasked with writing a module for a virtual reality application that
determines the rendering quality for each section of the headset’s screen. For simplicity,
your module will only deal with a single eye on a single screen. The screen will be
divided into a 20-by-20 grid of blocks.

Your program will be given the coordinates
within the grid at which the user is currently
focusing their sight, and will need to output
0 e e the rendering level of each cell in the grid
row by row.

Columns

The cell the user is looking directly at should
be rendered at full quality - 100%. All cells

. around that cell should be rendered at half

. . quality (50%), and all cells around those

. should be rendered at one-quarter quality

* (25%). All other cells should be rendered at
the minimum level of 10%.

Rows

19 L

Page 13 of 41 EN

Problem 6: Foveated Rendering

For example, if the user is looking at the block in row 7, column 10, the rendering quality
for each block in the grid would be:

Row

0

.o H
(e}

19

Col

0
10%

10%
10%
10%
10%
10%
10%
10%

10%

Sample Input

7
10%

10%
10%
10%
10%
10%
10%
10%

10%

8
10%

10%
25%
25%
25%
25%
25%
10%

10%

9
10%

10%
25%
50%
50%
50%
25%
10%

10%

10
10%
10%

25%
50%

100%

50%
25%
10%

10%

11
10%

10%
25%
50%
50%
50%
25%
10%

10%

12
10%

10%
25%
25%
25%
25%
25%
10%

10%

13
10%

10%
10%
10%
10%
10%
10%
10%

10%

19
10%

10%
10%
10%
10%
10%
10%
10%

10%

The first line of your program’s input, received from the standard input channel, will
contain a positive integer representing the number of test cases. Each test case will
include a single line of input containing two integers, separated by spaces, representing
the row and column number of the eye position within the screen’s grid, respectively.
Row and column numbers will be between 0 and 19 inclusive.

2
71
00

Sample Output

0

For each test case, your program must output the rendering quality percentage for each
block in the grid. Each row should be printed as a separate line, and columns should be

separated by spaces.

10
10
10
10
10
10
10
10
10
10

EN

10
10
10
10
10
10
10
10
10
10

10
10
10
10
10
10
10
10
10
10

10
10
10
10
10
10
10
10
10
10

10 10
10 10
10 10
10 10
10 10
10 10
10 10
10 10
10 10
10 10

10
10
10
10
10
10
10
10
10
10

10 10
10 10
10 10
10 10
10 10
10 25
10 25
10 25
10 25
10 25

10 10
10 10
10 10
10 10
10 10
25 25
50 50

50 100 50 25 10 10 10 10 10 10 1¢

10
10
10
10
10
25
50

10
10
10
10
10
25
25

10
10
10
10
10
10
10

10
10
10
10
10
10
10

10
10
10
10
10
10
10

10 10
10 10
10 10
10 10
10 10
10 10
10 10

10 10
10 10
10 10
10 10
10 10
10 10
10 10

50 50 50 25 10 10 10 10 10 190 10
25 25 25 25 10 10 10 10 10 10 10

Page 14 of 41

Problem 6: Foveated Rendering

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
100 50 25 10 10 10 10 10 10 10 10 10 10 10 10 1) 10 10 10 1«
50 50 25 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
25 25 25 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Page 15 of 41

Problem 7: Time and Time Again

Problem 7: Time and Time Again

Points: 20

Problem Background

Times and periods of times can be expressed in many
different ways. National and regional differences, and even
personal preferences, have led to a wide range of formats for
expressing times. This can lead to a great deal of confusion;
does the date 01/03 refer to January 3 or March 15t... or
January 20037 Is the time 8:45 in the morning or the evening?

You have been asked to break through some of this confusion
by converting a list of times to a new, consistent format.

Problem Description

Your program will receive a list of time durations that provide
the number of hours, minutes, and/or seconds within the
duration.

¢ Hours will be given as a non-negative integer followed by a lowercase letter ‘h’
(e.g. 2h). Hours will range from 0 to 99 inclusive.

e Minutes will be given as a non-negative integer followed by a lowercase letter ‘m’
(e.g. 2m). Minutes will range from 0 to 59 inclusive.

e Seconds will be given as a non-negative integer followed by a lowercase letter ‘s’
(e.g. 2s). Seconds will range from 0 to 59 inclusive.

These values may not be presented in this order. Values may be separated by spaces,
commas, and/or the word “and”; this text should be ignored. Some of these values may
be missing; for example, an input may only give you minutes and seconds. Any omitted
values should be assumed to be zero.

Regardless of what information is provided, your program will need to print the duration
in a simpler, more consistent format:

HH:MM:SS

In this format, HH is a two-digit number representing the number of hours (including a
leading zero, if necessary). MM is a two-digit number representing the number of
minutes (including a leading zero, if necessary). SS is a two-digit number representing
the number of seconds (including a leading zero, if necessary). Each number is

EN Page 16 of 41

Problem 7: Time and Time Again

separated from the next with a colon, and they are always presented in the same order.
All numbers must be included with the output, even if they are zero.

Sample Input

The first line of your program’s input, received from the standard input channel, will
contain a positive integer representing the number of test cases. Each test case will
include a single line of input containing a string describing a time duration in a variable
format as noted above.

5

1m and 45s
10m, 10s

32s, and 12h
76h

1s

Sample Output

For each test case, your program must output the same time interval on a single line in
the HH:MM:SS format described above.

00:01:45
00:10:10
12:00:32
76:00:00
00:00:01

Page 17 of 41 EN

Problem 8: Caesar Cipher

Problem 8: Caesar Cipher

Points: 20

Problem Background

The Caesar Cipher is one of the earliest known ciphers,
and among the simplest to learn. It is a “substitution
cipher”, in which each letter in the original message (the “plaintext”) is shifted a certain
number of places down the alphabet. For example, with a shift of 1, an A would be
replaced with a B, a B would be replaced with a C, and so on. This method is named
after Julius Caesar, who apparently used it to communicate with his generals.

To pass an encrypted message from one person to another, it is necessary that both
parties have the “key” for the cipher, so that the sender can encrypt it and the recipient
can decrypt it. For the Caesar Cipher, the key is the number of letters by which to shift
the cipher alphabet.

Problem Description

You are working for the History Channel, who wants to decrypt all communications that
Julius Caesar made to his generals in order to support a new documentary they’re
filming about the Roman emperor. You will be given a list of encrypted messages, and
the key believed to be used to encrypt those messages. Your program must decrypt
those messages.

For the purposes of this problem, we will be using the English alphabet, shown below in
its standard order (with a shift of 0).

A BCDEFGHIIJKLMNOPQRSTUVNWXYZ

If encrypting a message with a shift of 1, each letter in the plaintext will be replaced with
the respective letter shown in the 1-shifted alphabet below.

B CDEFGHIJKLMNOPQRSTUVWXYZA

To decrypt a message, the process is reversed; a letter in the ciphertext would be
replaced with the respective letter in the original English alphabet.

Spaces are not encrypted in this cipher and should remain in place when decrypting a
message.

EN Page 18 of 41

Problem 8: Caesar Cipher

Sample Input

The first line of your program’s input, received from the standard input channel, will
contain a positive integer representing the number of test cases. Each test case will
include two lines:

¢ A line with a single integer representing the message key - the number of letters
by which to shift the alphabet when encrypting the message.
¢ A line containing lowercase letters and spaces, representing the encrypted

message.
3
1
buubdl bu ebxo
3
ghvwurb wkh fdvwoh
6

yzkgr znk ynov

Sample Output

For each test case, your program must output the decrypted message. Messages
should be printed in lowercase, and all spaces should be retained.

attack at dawn
destroy the castle
steal the ship

Page 19 of 41 EN

Problem 9: Count to 10

Problem 9: Count to 10

Points: 25

Problem Background

When testing software or hardware, it's considered a “best practice” to test every
possible situation to prove that the code or device is stable under any condition it might
come across. For example, if we have a chip with eight LEDs, we might want to light up
those LEDs in every combination to make sure they function properly. This is essentially
an 8-bit binary counter, displaying each number from 0 to 255.

Problem Description

In this problem, you will need to generate test data for a binary counter like that
described above. You will be provided with the number of bits to use for your counter,
and will need to generate a list of all binary numbers with at most that number of bits in
numerical order.

Sample Input

The first line of your program’s input, received from the standard input channel, will
contain a positive integer representing the number of test cases. Each test case will
include a single line with a positive integer, representing the number of bits to use.

1
3

Sample Output

For each test case, your program must output a list of binary numbers, ranging from 0 to
the maximum value with the indicated number of bits, inclusive. Numbers must be listed
one per line, in numerical order. Include any leading zeros up to the required bit length.

000
001
010
011
100
101
110
111

EN Page 20 of 41

Problem 10: Minesweeper

Problem 10: Minesweeper

Points: 25

Problem Background

Minesweeper is a type of single-player puzzle game in which the {:}
player continuously selects different cells of a rectangular grid.

Each cell of the grid is either occupied by a bomb or is a safe 1

cell. If the player selects a cell occupied by a bomb, they

“explode” and lose the game. Otherwise, the selected cell shows
the number of neighboring cells that contain bombs. Cells are

RPINWIN

N | FE|
THw [N =

neighbors if they are adjacent horizontally, vertically, or
diagonally.

Problem Description

You will need to write a program that receives the size of a minesweeper grid and the
locations of the mines within that grid, then uses that information to display the
completed grid. The output should include the locations of all bombs, and numbers in
the safe cells indicating the number of neighboring bombs.

Sample Input

The first line of your program’s input, received from the standard input channel, will
contain a positive integer representing the number of test cases. Each test case will
include:

¢ A line containing three positive integers separated by spaces, representing:
o The number of rows within the minesweeper grid, R
o The number of columns within the minesweeper grid, C
o The number of bombs within the minesweeper grid, B
e B lines representing the location of each bomb within the grid. Each line contains
two integers separated by spaces, representing:
o Therow of the bomb’s cell. The topmost row in the grid is row 0. Values
will range from O (inclusive) to R (exclusive).
o The column of the bomb’s cell. The leftmost column in the grid is column
0. Values will range from O (inclusive) to C (exclusive).

PO NN
PO N

Page 21 of 41 EN

Problem 10: Minesweeper

MDA NBR WV
P ONNW

Sample Output

For each test case, your program must output the minesweeper grid described by the
input. Write each row on a separate line, and one character per cell. Cells containing
bombs should be represented by an asterisk character (*); safe cells should contain a
number (O through 8 inclusive) equal to the number of bombs in neighboring cells.

*2
2*
011
02*
02*
232

**1

EN Page 22 of 41

Problem 11: Homeward Bound

Problem 11: Homeward Bound

Points: 30

Problem Background

After a long delay figuring out what route he
should take, the travelling salesman has just
finished his journey and has collected orders from
customers all along the way. He finished his trip
at his company’s warehouse, and now he wants
to deliver all of his customer’s orders on the way
back home. To make sure he doesn’t miss
anyone, he’s planning to take the same trip in
reverse order. Unfortunately, as he’s walking
towards the ticket counter at the airline, he trips,
and scatters his used boarding passes
everywhere! He needs your help to get the
boarding passes back in the correct order so he
can reconstruct his journey and figure out how to
get back home.

Problem Description

Your program will be given several pairs of cities, indicating a departure and arrival
point for each of the salesman’s boarding passes. These pairs will be out of order. You
must reconstruct his original journey by determining the correct order of boarding
passes, then print the route he should take back home (the original route in reverse

order).

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include the following lines of input:

e A positive integer, X, indicating the number of boarding passes

e X lines, each listing two city names, separated by spaces. The first city is the
departure city for that boarding pass; the second is the arrival city. City names
will consist of upper and lower-case letters and underscores ().

Page 23 of 41

EN

2

4

Fort_Worth Denver
Washington Toronto
Orlando Fort_Worth
Denver Washington
5

Riyadh Singapore
Madrid London
Chicago Madrid
Berlin Riyadh
London Berlin

Sample Output

Problem 12: Have You Seen My Key

For each test case, your program must output each city the salesman should visit on the
way home, one city per line, starting with his original final destination.

Toronto
Washington
Denver
Fort_Worth
Orlando
Singapore
Riyadh
Berlin
London
Madrid
Chicago

EN

Page 24 of 41

Problem 12: Conway’s Game of Life

Problem 12: Conway’s Game of Life

Points: 40

Problem Background

In 1940, computer scientist John von Neumann defined life as a creation which can
reproduce itself and simulate a Turing machine: briefly, a device which acts according to
a set of rules. This definition gave rise to a continuing series of mathematical
experiments. Among the most famous of these is a “game” created by mathematician
John Conway in 1970 called Life. Conway'’s Life consists of a set of four rules to be
followed by a computer given an initial state of a grid filled with “live” and “dead” cells.

In each generation:

1. Any live cell adjacent to one or zero live cells dies (from loneliness).

2. Any live cell adjacent to two or three live cells lives.

3. Any live cell adjacent to four or more live cells dies (from overcrowding).

4. Any dead cell adjacent to exactly three live cells becomes alive (through
reproduction).

Diagonal cells are considered to be adjacent. Life evolves by applying these rules to the
“world” represented by the grid. The rules are applied, the world is redrawn, the rules
are applied again, and the world is redrawn again, repeating indefinitely

T=0 1 2 3

L1

= - R

:
:
L b

:

Page 25 of 41 EN

Problem 12: Conway’s Game of Life

These seemingly simple rules are completely deterministic; that is, each generation is
determined entirely by the state of the previous generation. Despite this, these rules can
yield some very complex behavior. Theoretically, Life is a “universal Turing machine;”
this means that anything that can be calculated through an algorithm can be calculated
with Life.

Problem Description

You must design a program that implements Conway’s Life on a 10-by-10 grid. Your
program will be given an initial state for the first generation. It must then determine the
state of the world after a given number of generations have been performed. Note that
cells outside the bounds of the 10-by-10 grid are always considered dead.

Sample Input

The first line of your program’s input, received from the standard input channel, will
contain a positive integer representing the number of test cases. Each test case will
include the following lines of input:

¢ A line containing a positive integer, X, indicating the number of generations to
calculate

e Ten lines containing ten characters each representing the initial state of the
world. Characters will be either ‘1’, representing a “live” cell, or ‘0’, representing a
“‘dead” cell.

1

6

0000000000
0000000000
0000000000
0000010000
0000111000
0000111000
0000010000
0000000000
0000000000
0000000000

Sample Output

For each test case, your program must output the state of the world after the indicated
number of generations. Each test case should include ten lines with ten characters
each.

EN Page 26 of 41

Problem 12: Conway’s Game of Life

0000000000
0000000000
0000111000
0001000100
0000000000
0000000000
0001000100
0000111000
0000000000
0000000000

Page 27 of 41

EN

Problem 13: Mandelbrot Set

Problem 13: Mandelbrot Set

Points: 45

Problem Background

The Mandelbrot set is drawn by considering the recursive function Zn+1 =Zn2 +c,
where cis a complex number of the form a + bi (in mathematics, i is an imaginary
number with the value of v—T; thus, i2 = —1). By iterating repeatedly, using each value
of Z to calculate the next value, we find that for some input values of ¢, Z grows without
bound. For others, Z remains bound.

To draw the Mandelbrot set, we use the “complex plane”, where the horizontal x-axis
represents the value of a, and the vertical y-axis represents the value of b. Each point is
colored based on the number of iterations (n) we can perform before the absolute value
of Z (|Z» |) becomes greater than a specified value. When this happens, it is said that
the function “diverges”. In the image below, black indicates that |Z» | remained below a
prescribed value for all values of n. Blue pixels represent points at which it took many
iterations to get |Z»| above that value; red pixels required fewer iterations.

EN Page 28 of 41

Problem 13: Mandelbrot Set

Let’s consider the function using a value of c = 1.1 + 2i.

Regardless of the value of c, the value of Zo always equals 0. We can use this to
determine the value of Zi:

Z1=Zo’+c
Z1=024+11+2i
Z1=1.1+ 2i

From this, we can see that for any value of ¢, Z1 = c. Now we need to determine if the
function has diverged. For the purposes of this problem, we’ll consider the function to
have diverged if |Z» | = 100. Since i is an imaginary number, we use this formula to
determine the absolute value of numbers of the form a + bi:

1z 1= VaZ+b?

|Z1] = V1.12 + 22
|Z1| =V121 + 4
|Z1] ~ 2.2825

2.2825 is less than 100, so the function hasn’t diverged yet. We need to do more
iterations to determine when it diverges, if ever:

Z2=7Z12+c

Z2 = (a1 + b1i)? + ao + boi

Z> =(11+2)*+1.1+2i

Za =112+ 1.1(20) + 1.1(20) + (20)? + 1.1 + 2i
Z>2=1214+44i—4+114+2i

Z2»=-1.69 + 6.4i

az=—1.69

b2 = 6.4

|Z2] = V—1.692 + 6.42

|Z2| ~ V2.8561 + 40.96
|Z2] ~ 6.6194

(Remember that iz = —1, so above, (2i)?=22%i2=4x—-1=—4.)

|Z2 | is still less than 100, so it hasn’t diverged yet. How many iterations do we need to
do to reach that point?

n Z a b |Z]|

1 1.1+ 2i 11 2 2.2825
2 -1.69 + 6.4i -1.69 6.4 6.6194
3 -37.0039 - 19.632i -37.0039 -19.632 41.8892
4 984.9732 + 1454.9211i 984.9732 1454.9211 1756.9769

Page 29 of 41

Problem 13: Mandelbrot Set

So at n = 4, we see that the value of |Z| > 100. This means that for this value of c, the
function has diverged at 4. We color the point at x = 1.1, y = 2 an appropriate color for
that value, and move on to the next value of c to be checked.

Problem Description

Your program must identify the color to use in a rendering of the Mandelbrot set for a
given value of c. Use the following table and the explanation above to determine what
colors should be used:

Value of n when function diverges | Color
<10 RED
11-20 ORANGE
21-30 YELLOW
31-40 GREEN
41-50 BLUE

> 51 BLACK

For the example calculation above, the function diverged at n = 4, so the color for that
value of ¢ should be red.

Sample Input

The first line of your program’s input, received from the standard input channel, will
contain a positive integer representing the number of test cases. Each test case will
include a single line of input with two decimal numbers separated by spaces. These
numbers represent the values for a and b, respectively. Remember that ¢ = a + bi.

4
1.1 2.0

5
08

® o ®
RGN
SIS
o N

Sample Output

For each test case, your program must output the value of ¢, followed by a space,
followed by the color used to render that value of ¢ according to the table above. The
color should be printed in uppercase letters. Decimal values should be printed as they
were received from the input.

1.1+2.01 RED
-0.7+0.21 BLACK
-0.5+0.651 ORANGE
-0.5+0.6081 BLUE

EN Page 30 of 41

Problem 14: Network Ranger

Problem 14: Network Ranger

Points: 50

Problem Background

How is the internet like the post office? They both use addresses!

Computers and other devices that connect to the internet are assigned an Internet
Protocol (IP) address when they connect. While a newer format is available, most
systems still use the IPv4 format for these addresses. In this format, an IP address
consists of four numbers, separated by periods. Each number can range from 0 to 255.
For example, the address 127.0.0.1 always represents your own computer (the
“localhost”).

As with any other piece of data, your computer stores these addresses in a binary
format. Each number in the address is represented by an eight-bit binary string of 0’'s
and 1’s; these strings are concatenated with each other to form the full address. For
example, the IP address 166.23.250.209 is converted as:

166 23 250 209
1/o]1]oJof1][1][ojo]ofof1]o]a]1]a|1]1]1]1]1]o]2[0]1]2][0]1]0[0]O]1

Just like mailing addresses can be grouped by a ZIP code or postal code, IP addresses
can be grouped by blocks. Internet companies can reserve these blocks to use in
assigning IP addresses to their customers, through a system called Classless Inter-
Domain Routing (CIDR). A CIDR block is defined by writing an IP address followed by a
slash and the number of bits that match between all members of the block (on the left
side of each address). For example, the IP addresses 192.168.0.0 and 192.168.108.68
are represented as the following binary numbers:

192 168 0 0
1/1]/o]o]o]o|ofo|1]o0][1]0|1][0]0][0|0|0]0|0[0|0O|0O|0O]0O|O]O|O]O|O|O]O
192 168 108 65
1/1]/o|ofo]o|ofo|1]o][1]0|1]{0]0]0|0|1]1|0[2|1]|0|0]0|1]0|0]0]|O]0O]1

The first 17 bits of both addresses are the same, so these addresses are part of the
192.168.0.0/17 block (any further matches after the first mismatch aren’t counted). This
could also be written as the 192.168.108.65/17 block, but the convention is to use the
first (smallest) address in a block when writing it out in this manner.

Page 31 of 41 EN

Problem 14: Network Ranger

Blocks can be any size from /0 to /32. A /32 block would require that all 32 bits match;
this represents a single address. A /0 block wouldn’t require that any bits match; this
represents the entire internet!

For this problem, you are working with the FBI's cyber crimes division to track down a
ring of internet scammers using ransomware to attack innocent people. You've been
able to track down a list of IP addresses used by the scammers. The FBI wants to get a
search warrant to figure out who is behind these IP addresses, but a judge won't issue
the warrant unless you can identify the smallest possible range that covers all of those
addresses.

Problem Description

Your program will be given a list of IPv4 addresses and must identify the smallest CIDR
block that contains every address. Each CIDR block should be written using the first
(smallest) address within the block; that is, 192.168.0.0/16 may be an acceptable
answer, but 192.168.0.1/16 is not.

Sample Input

The first line of your program’s input, received from the standard input channel, will
contain a positive integer representing the number of test cases. Each test case will
include the following lines of input:

¢ A line containing a single positive integer, X, indicating the number of IP
addresses used in this test case
e X lines, each containing a single IPv4 address

2

2

192.168.0.0
192.168.255.255
4

32.73.94.16
32.73.89.172
32.73.95.210
32.73.92.82

Sample Output

For each test case, your program must output the smallest CIDR range that contains
every listed IP address, using the format described above.

192.168.0.0/16
32.73.88.0/21

EN Page 32 of 41

Problem 15: Hide Your Spies

Problem 15: Hide Your Spies

Points: 55

Problem Background

You're working with an intelligence agency to guide a spy through a secret enemy
installation. The enemy has cameras positioned throughout the building with a 360° field
of view; if your spy is caught on camera, the mission will fail! Fortunately, there are a
number of walls blocking the view of the cameras that your spy can hide behind. You
need to be able to determine if your spies will be seen based on the position of the
cameras, spies, and the walls in the room.

Problem Description

Your mission, should you choose to accept it, is to determine if there is a clear line of
sight from a camera at a given set of (x, y) coordinates to a spy located at a different set
of coordinates. Several walls will be positioned throughout the room; if a wall intersects
a line drawn between the camera and the spy, the spy is hidden and avoids detection.
You must write a program that checks if the spy is successfully hidden and reports if he
has been detected or not.

A A
7 7
6 ’n 6
¢"’
-
5 z 5
a"’ r’_
p a" P
Y N Yy -
] Prag
o
p 4"
3 3
1]
2 2
1 1
4 v 1 2 3 4 5 6 7 ’ 4 v 1 2 3 4 5 6 7 ’
X X

The wall’s line doesn’t intersect the line The wall is between the camera and the
between the spy and the camera. The spy, intersecting that line. The spy
spy is detected! remains hidden.

Page 33 of 41 EN

Problem 15: Hide Your Spies

To determine if two lines intersect, you'll need to locate the point at which the lines
would intersect if they were continued infinitely in both directions. Remember that a
(non-vertical) line can be defined using the equation

y=ax+c

a is known as the “slope” of the line, and can be calculated from any two points (x1, y1)
and (xz, y2) as follows:

y2 —)1
a:
X2 — X1

(If x2 — x1 = 0, then a is undefined, and the line is vertical.) Once you know a, you can
calculate c using it and the (x, y) coordinates of one of the points on the line:

c=y-—ax

Complete this process for the two lines you’re trying to check for intersection to obtain
both of their line equations. You can then use both equations to calculate the (x, y) point
at which the lines would intersect. If this point is within the bounds of the points you
already knew about, then the wall is blocking the camera’s line of sight!

Sample Input

The first line of your program’s input, received from the standard input channel, will
contain a positive integer representing the number of test cases. Each test case will
include the following lines of input:

¢ A line containing five integers separated by spaces, representing the following
information, in order:
o The X-coordinate of the spy within the current room
o The Y-coordinate of the spy within the current room
o The X-coordinate of the camera within the current room
o The Y-coordinate of the camera within the current room
o The number of walls in the current room, W
e W lines containing four integers separated by spaces, each line representing
information about a wall within the room:
o The X-coordinate of the start of the wall
o The Y-coordinate of the start of thewall
o The X-coordinate of the end of the wall
o The Y-coordinate of the end of the wall

EN Page 34 of 41

Problem 15: Hide Your Spies

22642
4145
1545

Sample Output

For each test case, your program must output a single line containing either the word
“YES” (indicating that the spy was seen by the camera) or “NO” (if the spy evaded
detection).

YES
NO

Page 35 of 58

EN

Problem 16: Evacuate!

Problem 16: Evacuate!

Points: 70

Problem Background

It's your first day working at as a software engineer.
You’ve finished your orientation and are at your new
desk, ready to start work when...

BEEP! ... BEEP! ... BEEP!

It's the fire alarm! You’re not familiar with the
building yet and don’t know where to go!
Fortunately, your coworkers help you get outside
safely, and it was just a fire drill anyway, but the
experience gives you an idea. What if you had an
app on your phone that could guide you to the nearest exit? You present the idea to
your manager, and they agree to start the project!

Problem Description

Your program will read in an image of a building’s floor plan and must find the shortest
route to the outside of the building from the given start position. While searching for the
shortest path, you may travel in any cardinal direction - up, down, left, or right. You may
not move diagonally, nor through walls. In the event that multiple paths are tied for the
shortest length, take the path that exits closest to the top-left corner of the map. While
the map will be rectangular (or square), the building’s layout may not be.

Sample Input

The first line of your program’s input, received from the standard input channel, will
contain a positive integer representing the number of test cases. Each test case will
include the following lines of input:

¢ A line containing two integers separated by spaces:
o Thefirst integer represents the width of the map, W
o The second integer represents the height of the map,H
e Atotal of H lines, each up to W characters long, containing the map of the
building.
o A # (hashtag) character represents a wall of the building.

EN Page 36 of 41

Problem 16: Evacuate!

A space indicates an empty navigable hallway or room.

A lowercase letter o represents your start position within the building.

An uppercase letter X represents an exit from the building.

Lines may be shorter than W characters; any “missing” characters will be
outside the building and should have no bearing on your work. Remember
not to print any trailing whitespace in your output.

O O O O

2

10 10

HAHAHAHEXH

X Ht #

HHAH #

OH#H HH

H## ## #

Ho#t # # #

HHH H HH

HeH## ## X

X H##
HEHAHAXHHH

30 20
HEXHH A H AT
H## HEHH
HEHAH #H HiHS #

H## # H#H
HOH OHHOHOH HHH H
H OHH# # # #
H OH#HH HEHHHHHE
H#OHHHAH H#HH HiH#
HitH#HH
HEHAH HitH # #
HAHE #HHHHE
HH HHAHHHH # HHHHAHHAHHHHHE
H## # HitHtHS #
HE # HiHAHAHAHE
HEH # HE H O HHHHH HH #
H O#H#H# # # # # HHHHEHSHAH
H# H# HOHHHHH
H#HHHHH Y HEH R #
#

HEHFH AR X H

Page 37 of 41

EN

Problem 16: Evacuate!

Sample Output

For each test case, your program must output the original map of the building, with the
shortest path marked using periods (.) in place of the spaces presented above.

HAHAHAHEXH
X Ht #
HH#H #
H.. H# H## #
H.oH.H H#HH #
ot . # #
HiH. . # #H#t
HeHe #H X
X .. H#
HEHAHAXHHH
HEXHHAHAHAHHHHHHHH
i HH#H
HEHAH HH . HEHS #

#H.#H H#H#H
H # H#EH H OHEH H
HOHHH H# ... H# #
#O#H . HHH Y
H OHEHEH HH. HHH
HAHAHE .
HHAHE #HHF. L. # #
HHHHE HHHHE
HH HEHSHAH H HAHHHHAHHAH T
HH# #. HitHAHHS #
H O# O##H #H....... HHAHAHAHE #
HHH # HE H #HHAHE #HH #
HOHHH H# # #..... H# o HHHEHE R
H# HOHHHHH
H# HHHHHEHE HAHHHHAH RS #
#

HAHAHAH A HHHHHHHHFHXHAHAH AR AR

EN Page 38 of 41

Problem 17: Sudoku

Problem 17: Sudoku

Points: 80

Problem Background

Sudoku is a popular logic puzzle commonly found
in newspapers, magazines, and online. Most
likely originating in Indiana in 1979, the puzzle
format found great popularity in Japan in the
1980s and became a worldwide phenomenon in
the new millennium. Newspapers in particular
contributed to the puzzle’s establishment as a
household name due to the puzzle’s similarities
with crossword puzzles.

Sudoku is played on a 9-by-9 grid of squares
divided into 3-by-3 subgrids. Each square is filled
in with one of the numbers from 1 to 9 inclusive,
such that in the final solution any given digit
appears exactly once within its row, column, and
subgrid. The original puzzle is mostly blank, with only some numbers pre-filled as hints.
The player must use these hints to determine how to fill in the remaining squares
through process of elimination, logical deduction, and trial and error. In the image
above, the bold black numbers are the original hints given by the puzzle; the italic red
numbers are those filled in by the player to produce the solution. In order to be a
“proper” Sudoku puzzle, a given set of hints must have one unique solution.

OlA W | [Oolo|N | D

w0 o [oo [k [N e | &
N

oo [P N|x foeo|w |
NP |o]x | wiNy|old |G
SN NN NET
o A N Mo o oy | K
NN BRSNS B EEEE

Kln (oo oo [Now
alo e Nelw [0 o

The properties of Sudoku puzzles have lent it to a great deal of study by
mathematicians and computer scientists. Considerable research has been put into
finding the minimum number of clues that can be given while still producing a unique
solution (17), and into finding puzzles that follow certain patterns. Solving Sudoku
puzzles efficiently is a somewhat difficult task in computer science; it falls into the
category of problems known as “NP-complete.” This means that it is believed that no
algorithm exists that can solve a Sudoku puzzle in less than polynominal time (without
having loops nested at least two deep).

Problem Description

You will need to write a program that can read a Sudoku puzzle and find its solution.
Remember, to solve a Sudoku puzzle, you must fill in all the blank squares with a

Page 39 of 41 EN

Problem 17: Sudoku

number between 1 and 9 inclusive, such that each number appears exactly once in
each row, column, and 3-by-3 subgrid.

All of the puzzles your program will be given will be “proper” Sudoku puzzles; as stated
above, this means that each puzzle will have exactly one valid solution.

Sample Input

The first line of your program’s input, received from the standard input channel, will
contain a positive integer representing the number of test cases. Each test case will
include nine lines of text. Each line will contain only the digits from 1 through 9 inclusive
and underscores (_). Underscores represent blank spaces in the puzzle that must be
filled. Digits represent hints that should remain in place in the final solution.

2
4.2
6
_589
9 _5_8_
__34_51
_16_32_
81
3.62_9 4
__16_52
_7.5.46
39
62___ 39_

6_
9__3
_5_71_94_
2_6_5_7
Sample Output

For each test case, your program must output the solved Sudoku puzzle, printing nine
lines with nine digits per line.

462571839
913468572
758923146
194756283
827349651

EN Page 40 of 41

Problem 17: Sudoku

635812497
541697328
289134765
376285914
568327419
439168752
172594836
394286175
625471398
781953264
947835621
856712943
213649587

Page 41 of 41

