

2020
Problem Packet

DO NOT OPEN THIS PACKET

UNTIL THE CONTEST BEGINS

This page is intentionally blank.

Once the contest starts, you can

remove this page.

2020 Problem Packet

Problem Name Points Page

1 No More Shouting 5 7

2 Sum It Up 5 8

3 Goofy Gorillas 5 9

4 Brick House 10 10

5 Image Compression 15 11

6 Foveated Rendering 15 13

7 Time and Time Again 20 16

8 Caesar Cipher 20 18

9 Count to 10 25 20

10 Minesweeper 25 21

11 Homeward Bound 30 23

12 Conway’s Game of Life 40 25

13 Mandelbrot Set 45 28

14 Network Ranger 50 31

15 Hide Your Spies 55 33

16 Evacuate! 70 36

17 Sudoku 80 39

Frequently Asked Questions

EN Page 4 of 41

Frequently Asked Questions

How does the contest work?

To solve each problem, your team will need to write a computer program that reads

input from the standard input channel and prints the expected output to the console.

Each problem describes the format of the input and the expected format for the output.

When you have finished your program, you will submit the source code for your

program to the contest website.

How is each problem scored?

Each problem is assigned a point value based on the difficulty of the problem. If the

outputs match exactly, you will be given the points for the problem. There is no partial

credit; your outputs must match exactly.

How are ties broken?

At the end of the contest, teams will be ranked based on the number of points they

earned from correct answers during the contest. If there is a tie for the top three

positions in either division, ties will be broken as follows:

1. Fewest problems solved (this indicates more difficult problems were solved)

2. Fewest incorrect answers (this indicates they had fewer mistakes)

3. First team to submit their last correct response (this indicates they worked faster)

Rounding

Page 5 of 41

EN

Rounding

Some problems will ask you to round numbers. All problems use the “half up” method of

rounding unless otherwise stated in the problem description. Most likely, this is the sort

of rounding you learned in school, but some programming languages use different

rounding methods by default. Unless you are certain you know how your

programming language handles rounding, we recommend writing your own code

for rounding numbers based on the information provided in this section.

With “half up” rounding, numbers are rounded to the nearest integer. For example:

4. 1.49 rounds down to 1

5. 1.51 rounds up to 2

The “half up” term means that when a number is exactly in the middle, it rounds to the

number with the greatest absolute value (the one farthest from 0). For example:

6. 1.5 rounds up to 2

7. -1.5 rounds down to -2

Rounding errors are a common mistake; if a problem requires rounding and the contest

website keeps saying your program is incorrect, double check the rounding!

Terminology

EN Page 6 of 41

Terminology

Throughout this packet, we will describe the inputs and outputs your programs will

receive. To avoid confusion, certain terms will be used to define various properties of

these inputs and outputs. These terms are defined below.

8. An integer is any whole number; that is, a number with no decimal or fractional

component: -5, 0, 5, and 123456789 are all integers.

9. A decimal number is any number that is not an integer. These numbers will

contain a decimal point and at least one digit after the decimal point. -1.52, 0.0,

and 3.14159 are all decimal numbers.

10. Decimal places refer to the number of digits in a decimal number following the

decimal point. Unless otherwise specified in a problem description, decimal

numbers may contain any number of decimal places greater or equal to 1.

11. A hexadecimal number or string consists of a series of one or more characters

including the digits 0-9 and/or the uppercase letters A, B, C, D, E, and/or F.

Lowercase letters are not used for hexadecimal values in this contest.

12. Positive numbers are those numbers strictly greater than 0. 1 is the smallest

positive integer; 0.000000000001 is a very small positive decimal number.

13. Non-positive numbers are all numbers that are not positive; that is, all numbers

less than or equal to 0.

14. Negative numbers are those numbers strictly less than 0. -1 is the greatest

negative integer; -0.000000000001 is a very large positive decimal number.

15. Non-negative numbers are all numbers that are not negative; that is, all

numbers greater than or equal to 0.

16. Inclusive indicates that the range defined by the given values includes both of

the values given. For example, the range 1 to 3 inclusive contains the numbers 1,

2, and 3.

17. Exclusive indicates that the range defined by the given values does not include

either of the values given. For example, the range 0 to 4 exclusive includes the

numbers 1, 2, and 3; 0 and 4 are not included.

18. Date and time formats are expressed using letters in place of numbers:
o HH indicates the hours, written with two digits (including a leading zero

when needed). The problem description will specify if 12- or 24-hour

formats should be used.

o MM indicates the minutes for times or the month for dates. In both cases,

the number is written with two digits (including a leading zero when

needed). January is month 01.

o YY or YYYY is the year, written with two or four digits (including a leading
zero when needed).

o DD is the date of the month, written with two digits (including a leading
zero when needed).

Problem 1: No More Shouting

Page 7 of 41

EN

Problem 1: No More Shouting

Points: 5

Problem Background

It’s common knowledge that on the internet, TYPING IN ALL

UPPERCASE LETTERS ISN’T VERY POLITE. It just looks like you’re shouting

at people, which isn’t a very good way to hold a conversation. You’ve been asked to

design a browser extension that can (forcibly) calm everyone down by converting

UPPERCASE SHOUTING into lowercase whispers. Try to stay calm as you solve this

problem.

Problem Description

Your program will be given lines of text in which all letters are uppercase. You must

convert these letters to lowercase without otherwise changing the content of the text.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include a single line of text consisting of uppercase letters, numbers, spaces, and/or

punctuation.

2

THIS SENTENCE IS IN ALL CAPS

SHOUTING ISN’T NICE.

Sample Output

For each test case, your program must output the provided string after replacing all

uppercase letters with their lowercase equivalents. Spaces, numbers, and punctuation

should not be modified.

this sentence is in all caps

shouting isn’t nice.

Problem 2: Sum It Up

EN Page 8 of 41

Problem 2: Sum It Up

Points: 5

Problem Background

Adding up numbers is very easy, unless you add a twist. If two numbers are the same,

sum their sums!

Problem Description

Your program will be given two numbers. If they are not equal, return their sum. If they

are equal, return double their sum.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include a single line consisting of two non-negative integers separated by spaces.

5
1 3

2 2

3 2

13 13
125 9

Sample Output

For each test case, your program must output the value calculated according to the

rules described above.

4

8
5

52

134

Problem 3: Goofy Gorillas

Page 9 of 41

EN

Problem 3: Goofy Gorillas

Points: 5

Problem Background

The local zoo’s most popular exhibit contains two

gorillas. However, the gorillas can cause the

zookeepers some issues. We need to be able to

alert the zookeepers of trouble in the gorilla

compound.

Problem Description

Your program will be given information about

whether each of the gorillas is smiling or not. We need to alert the zookeepers if both

gorillas are smiling (which might mean they’re causing trouble), or if neither gorilla is

smiling (which might mean they’re about to fight). If only one gorilla is smiling,

everything is probably ok.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include a single line containing two boolean values (“true” or “false”) separated by

spaces.

2
true false

true true

Sample Output

For each test case, your program must output “true” if the zookeepers should be alerted

about potential trouble, or “false” if everything seems ok.

false
true

Problem 4: Brick House

EN Page 10 of 41

Problem 4: Brick House

Points: 10

Problem Background

We want to build a row of bricks for our brick house that

is a certain number of inches long, and we have a number of small bricks and large

bricks with which to do it. You need to write an application that will decide if its is

possible to build this row of bricks using some or all of the given bricks. You do not need

to use all of the given bricks!

Problem Description

Your program will be given a goal length for the brick wall and the number of small and

large bricks available. Small bricks are each 1 inch long. Large bricks are 5 inches long.

You will need to determine if it is possible to build a row of bricks exactly as long as the

goal using only the available bricks.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

consist of a single line, including three non-negative integers separated by spaces:

• The first integer represents the number of small, one-inch-long bricks

• The second integer represents the number of large, five-inch-long bricks

• The third integer represents the target length of the wall, X, in inches

3

3 1 8

3 1 9

3 2 10

Sample Output

For each test case, your program must print a single line with the word “true” if it is

possible to build a wall of exactly X inches using only the bricks available. Otherwise, it

should print “false”.

true

false

true

Problem 5: Image Compression

Page 11 of 41

EN

Problem 5: Image Compression

Points: 15

Problem Background

Images can be saved onto a computer in many

different types of file formats, each with its own

advantages and disadvantages. JPEG (or JPG)

images are commonly used for photography,

because their format allows the image

information to be compressed, reducing the size

of the file and allowing you to take more pictures.

The downside to this is that repeatedly editing a

JPEG image causes the quality of the image to

gradually get worse over time; each time the file

is saved, the existing image data is compressed

further and further, losing fine details.

The process of compressing a JPEG image is

complicated but can be broken down into several

individual steps. One of these steps is called

quantization, which takes a wide range of numbers created by a previous step in the

process and converts them to a smaller, more manageable scale. This results in some

loss of detail as previously mentioned; two different but close numbers may be

converted to the same result number. However, the human eye often cannot discern

very high-frequency changes, so this loss is usually not noticeable.

Problem Description

Your program will need to implement an example quantization algorithm that accepts

perceived brightness values and converts them to an integer value between 0 and 255

inclusive. Your program will be given a list of decimal values representing brightness

values (such as might be read by a scanner). Your program must identify the highest

(max) value and the lowest (min) value from the list of values, then convert all values in

the list to the target scale using this formula:

𝐼𝑛𝑝𝑢𝑡 − 𝑀𝑖𝑛
𝑂𝑢𝑡𝑝𝑢𝑡 =

𝑀𝑎𝑥 − 𝑀𝑖𝑛
∗ 255

All results should be rounded to the nearest integer.

Problem 5: Image Compression

EN Page 12 of 41

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include the following lines of input:

• A positive integer, X, representing the number of values in the list

• X lines, each containing a decimal number to be converted

2
5

0.0

25.0

50.0
75.0

100.0

6

12.3
-67.1

122.8

428.4

-15.9
221.0

Sample Output

For each test case, your program must output the list of converted numbers,

maintaining the same order. Print one number per line, and round all results to the

nearest integer.

0

64

128
191

255

41

0
98

255

26

148

Problem 6: Foveated Rendering

Page 13 of 41

EN

Problem 6: Foveated Rendering

Points: 15

Problem Background

Virtual Reality has exploded into the market in the last five years, being used for

everything from games and entertainment to product design and engineering. One of

the more recent advances in VR headset design is the addition of eye tracking to

increase performance.

The human eye has an extremely narrow field of view in which perfect 20/20 vision is

attainable and fine detail can be distinguished. This clarity of vision is due to the fovea,

a small depression in the inner retina specialized for this purpose. However, due to the

size of the fovea, the human eye can only see clearly within a field of view of less than

10°. The rest of our vision comes from the brain piecing together imagery as we look

around.

Due to this fact, a VR headset only needs to render the highest resolution imagery

directly where the user is looking. Images outside of that field of view can be rendered

at a lower quality, increasing the performance of the system.

Problem Description

You have been tasked with writing a module for a virtual reality application that

determines the rendering quality for each section of the headset’s screen. For simplicity,

your module will only deal with a single eye on a single screen. The screen will be

divided into a 20-by-20 grid of blocks.

Your program will be given the coordinates

within the grid at which the user is currently

focusing their sight, and will need to output

the rendering level of each cell in the grid

row by row.

The cell the user is looking directly at should

be rendered at full quality - 100%. All cells

around that cell should be rendered at half

quality (50%), and all cells around those

should be rendered at one-quarter quality

(25%). All other cells should be rendered at

the minimum level of 10%.

Problem 6: Foveated Rendering

EN Page 14 of 41

For example, if the user is looking at the block in row 7, column 10, the rendering quality

for each block in the grid would be:

𝑅𝑜𝑤
𝐶𝑜𝑙 0 ⋯ 7 8 9 10 11 12 13 ⋯ 19

0 10% ⋯ 10% 10% 10% 10% 10% 10% 10% ⋯ 10%
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋰ ⋮
4 10% ⋯ 10% 10% 10% 10% 10% 10% 10% ⋯ 10%
5 10% ⋯ 10% 25% 25% 25% 25% 25% 10% ⋯ 10%
6 10% ⋯ 10% 25% 50% 50% 50% 25% 10% ⋯ 10%
7 10% ⋯ 10% 25% 50% 100% 50% 25% 10% ⋯ 10%
8 10% ⋯ 10% 25% 50% 50% 50% 25% 10% ⋯ 10%
9 10% ⋯ 10% 25% 25% 25% 25% 25% 10% ⋯ 10%

10 10% ⋯ 10% 10% 10% 10% 10% 10% 10% ⋯ 10%
⋮ ⋮ ⋰ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

19 10% ⋯ 10% 10% 10% 10% 10% 10% 10% ⋯ 10%

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include a single line of input containing two integers, separated by spaces, representing

the row and column number of the eye position within the screen’s grid, respectively.

Row and column numbers will be between 0 and 19 inclusive.

2

7 10

0 0

Sample Output

For each test case, your program must output the rendering quality percentage for each

block in the grid. Each row should be printed as a separate line, and columns should be

separated by spaces.

10
10

10

10

10

10 10 10 10 10 10 10 10 25 25 25 25 25 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 25 50 50 50 25 10 10 10 10 10 10 10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

25

25

50

50

100 50 25 10 10 10 10 10 10 10

50 50 25 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 25 25 25 25 25 10 10 10 10 10 10 10

Problem 6: Foveated Rendering

Page 15 of 41

EN

100 50 25 10 10 10 10 10 10 10 10 10 10 10 10 1

10

10

10

10

10

10

10

10

10
10

50 50 25 10 10 10 10 10

10 10 10 10 10 10 10 10

0 10 10 10 10
10 10 10 10

25 25 25 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10
10

Problem 7: Time and Time Again

EN Page 16 of 41

Problem 7: Time and Time Again

Points: 20

Problem Background

Times and periods of times can be expressed in many

different ways. National and regional differences, and even

personal preferences, have led to a wide range of formats for

expressing times. This can lead to a great deal of confusion;

does the date 01/03 refer to January 3rd or March 1st… or

January 2003? Is the time 8:45 in the morning or the evening?

You have been asked to break through some of this confusion

by converting a list of times to a new, consistent format.

Problem Description

Your program will receive a list of time durations that provide

the number of hours, minutes, and/or seconds within the

duration.

• Hours will be given as a non-negative integer followed by a lowercase letter ‘h’

(e.g. 2h). Hours will range from 0 to 99 inclusive.

• Minutes will be given as a non-negative integer followed by a lowercase letter ‘m’

(e.g. 2m). Minutes will range from 0 to 59 inclusive.

• Seconds will be given as a non-negative integer followed by a lowercase letter ‘s’

(e.g. 2s). Seconds will range from 0 to 59 inclusive.

These values may not be presented in this order. Values may be separated by spaces,

commas, and/or the word “and”; this text should be ignored. Some of these values may

be missing; for example, an input may only give you minutes and seconds. Any omitted

values should be assumed to be zero.

Regardless of what information is provided, your program will need to print the duration

in a simpler, more consistent format:

HH:MM:SS

In this format, HH is a two-digit number representing the number of hours (including a

leading zero, if necessary). MM is a two-digit number representing the number of

minutes (including a leading zero, if necessary). SS is a two-digit number representing

the number of seconds (including a leading zero, if necessary). Each number is

Problem 7: Time and Time Again

Page 17 of 41

EN

separated from the next with a colon, and they are always presented in the same order.

All numbers must be included with the output, even if they are zero.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include a single line of input containing a string describing a time duration in a variable

format as noted above.

5

1m and 45s

10m,10s

32s, and 12h

76h

1s

Sample Output

For each test case, your program must output the same time interval on a single line in

the HH:MM:SS format described above.

00:01:45

00:10:10

12:00:32

76:00:00
00:00:01

Problem 8: Caesar Cipher

EN Page 18 of 41

Problem 8: Caesar Cipher

Points: 20

Problem Background

The Caesar Cipher is one of the earliest known ciphers,

and among the simplest to learn. It is a “substitution

cipher”, in which each letter in the original message (the “plaintext”) is shifted a certain

number of places down the alphabet. For example, with a shift of 1, an A would be

replaced with a B, a B would be replaced with a C, and so on. This method is named

after Julius Caesar, who apparently used it to communicate with his generals.

To pass an encrypted message from one person to another, it is necessary that both

parties have the “key” for the cipher, so that the sender can encrypt it and the recipient

can decrypt it. For the Caesar Cipher, the key is the number of letters by which to shift

the cipher alphabet.

Problem Description

You are working for the History Channel, who wants to decrypt all communications that

Julius Caesar made to his generals in order to support a new documentary they’re

filming about the Roman emperor. You will be given a list of encrypted messages, and

the key believed to be used to encrypt those messages. Your program must decrypt

those messages.

For the purposes of this problem, we will be using the English alphabet, shown below in

its standard order (with a shift of 0).

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

If encrypting a message with a shift of 1, each letter in the plaintext will be replaced with

the respective letter shown in the 1-shifted alphabet below.

B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

To decrypt a message, the process is reversed; a letter in the ciphertext would be

replaced with the respective letter in the original English alphabet.

Spaces are not encrypted in this cipher and should remain in place when decrypting a

message.

Problem 8: Caesar Cipher

Page 19 of 41

EN

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include two lines:

• A line with a single integer representing the message key - the number of letters

by which to shift the alphabet when encrypting the message.

• A line containing lowercase letters and spaces, representing the encrypted

message.

3

1

buubdl bu ebxo
3

ghvwurb wkh fdvwoh

6

yzkgr znk ynov

Sample Output

For each test case, your program must output the decrypted message. Messages

should be printed in lowercase, and all spaces should be retained.

attack at dawn

destroy the castle

steal the ship

Problem 9: Count to 10

EN Page 20 of 41

Problem 9: Count to 10

Points: 25

Problem Background

When testing software or hardware, it’s considered a “best practice” to test every

possible situation to prove that the code or device is stable under any condition it might

come across. For example, if we have a chip with eight LEDs, we might want to light up

those LEDs in every combination to make sure they function properly. This is essentially

an 8-bit binary counter, displaying each number from 0 to 255.

Problem Description

In this problem, you will need to generate test data for a binary counter like that

described above. You will be provided with the number of bits to use for your counter,

and will need to generate a list of all binary numbers with at most that number of bits in

numerical order.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include a single line with a positive integer, representing the number of bits to use.

1

3

Sample Output

For each test case, your program must output a list of binary numbers, ranging from 0 to

the maximum value with the indicated number of bits, inclusive. Numbers must be listed

one per line, in numerical order. Include any leading zeros up to the required bit length.

000

001

010

011

100
101

110

111

Problem 10: Minesweeper

Page 21 of 41

EN

Problem 10: Minesweeper

Points: 25

Problem Background

Minesweeper is a type of single-player puzzle game in which the

player continuously selects different cells of a rectangular grid.

Each cell of the grid is either occupied by a bomb or is a safe

cell. If the player selects a cell occupied by a bomb, they

“explode” and lose the game. Otherwise, the selected cell shows

the number of neighboring cells that contain bombs. Cells are

neighbors if they are adjacent horizontally, vertically, or

diagonally.

Problem Description

You will need to write a program that receives the size of a minesweeper grid and the

locations of the mines within that grid, then uses that information to display the

completed grid. The output should include the locations of all bombs, and numbers in

the safe cells indicating the number of neighboring bombs.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include:

• A line containing three positive integers separated by spaces, representing:

o The number of rows within the minesweeper grid, R
o The number of columns within the minesweeper grid, C
o The number of bombs within the minesweeper grid, B

• B lines representing the location of each bomb within the grid. Each line contains

two integers separated by spaces, representing:

o The row of the bomb’s cell. The topmost row in the grid is row 0. Values
will range from 0 (inclusive) to R (exclusive).

o The column of the bomb’s cell. The leftmost column in the grid is column
0. Values will range from 0 (inclusive) to C (exclusive).

2

2 2 2

0 0
1 1

☼ 2 1 1

1 3 ☼ 2

0 2 ☼ 3

0 1 2 ☼

Problem 10: Minesweeper

EN Page 22 of 41

5 3 4

1 2

2 2
4 0
4 1

Sample Output

For each test case, your program must output the minesweeper grid described by the

input. Write each row on a separate line, and one character per cell. Cells containing

bombs should be represented by an asterisk character (*); safe cells should contain a

number (0 through 8 inclusive) equal to the number of bombs in neighboring cells.

*2

2*

011
02*

02*

232

**1

Problem 11: Homeward Bound

Page 23 of 41

EN

Problem 11: Homeward Bound

Points: 30

Problem Background

After a long delay figuring out what route he

should take, the travelling salesman has just

finished his journey and has collected orders from

customers all along the way. He finished his trip

at his company’s warehouse, and now he wants

to deliver all of his customer’s orders on the way

back home. To make sure he doesn’t miss

anyone, he’s planning to take the same trip in

reverse order. Unfortunately, as he’s walking

towards the ticket counter at the airline, he trips,

and scatters his used boarding passes

everywhere! He needs your help to get the

boarding passes back in the correct order so he

can reconstruct his journey and figure out how to

get back home.

Problem Description

Your program will be given several pairs of cities, indicating a departure and arrival

point for each of the salesman’s boarding passes. These pairs will be out of order. You

must reconstruct his original journey by determining the correct order of boarding

passes, then print the route he should take back home (the original route in reverse

order).

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include the following lines of input:

• A positive integer, X, indicating the number of boarding passes

• X lines, each listing two city names, separated by spaces. The first city is the

departure city for that boarding pass; the second is the arrival city. City names

will consist of upper and lower-case letters and underscores (_).

Problem 12: Have You Seen My Key

EN Page 24 of 41

2

4

Fort_Worth Denver

Washington Toronto

Orlando Fort_Worth

Denver Washington

5

Riyadh Singapore

Madrid London

Chicago Madrid

Berlin Riyadh

London Berlin

Sample Output

For each test case, your program must output each city the salesman should visit on the

way home, one city per line, starting with his original final destination.

Toronto

Washington

Denver

Fort_Worth

Orlando

Singapore

Riyadh

Berlin

London

Madrid

Chicago

Problem 12: Conway’s Game of Life

Page 25 of 41

EN

Problem 12: Conway’s Game of Life

Points: 40

Problem Background

In 1940, computer scientist John von Neumann defined life as a creation which can

reproduce itself and simulate a Turing machine: briefly, a device which acts according to

a set of rules. This definition gave rise to a continuing series of mathematical

experiments. Among the most famous of these is a “game” created by mathematician

John Conway in 1970 called Life. Conway’s Life consists of a set of four rules to be

followed by a computer given an initial state of a grid filled with “live” and “dead” cells.

In each generation:

1. Any live cell adjacent to one or zero live cells dies (from loneliness).

2. Any live cell adjacent to two or three live cells lives.

3. Any live cell adjacent to four or more live cells dies (from overcrowding).

4. Any dead cell adjacent to exactly three live cells becomes alive (through

reproduction).

Diagonal cells are considered to be adjacent. Life evolves by applying these rules to the

“world” represented by the grid. The rules are applied, the world is redrawn, the rules

are applied again, and the world is redrawn again, repeating indefinitely

T = 0 1 2 3 4

Problem 12: Conway’s Game of Life

EN Page 26 of 41

These seemingly simple rules are completely deterministic; that is, each generation is

determined entirely by the state of the previous generation. Despite this, these rules can

yield some very complex behavior. Theoretically, Life is a “universal Turing machine;”

this means that anything that can be calculated through an algorithm can be calculated

with Life.

Problem Description

You must design a program that implements Conway’s Life on a 10-by-10 grid. Your

program will be given an initial state for the first generation. It must then determine the

state of the world after a given number of generations have been performed. Note that

cells outside the bounds of the 10-by-10 grid are always considered dead.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include the following lines of input:

• A line containing a positive integer, X, indicating the number of generations to

calculate

• Ten lines containing ten characters each representing the initial state of the

world. Characters will be either ‘1’, representing a “live” cell, or ‘0’, representing a

“dead” cell.

1

6

0000000000

0000000000

0000000000
0000010000

0000111000

0000111000

0000010000

0000000000

0000000000

0000000000

Sample Output

For each test case, your program must output the state of the world after the indicated

number of generations. Each test case should include ten lines with ten characters

each.

Problem 12: Conway’s Game of Life

Page 27 of 41

EN

0000000000

0000000000

0000111000
0001000100

0000000000

0000000000

0001000100
0000111000

0000000000

0000000000

Problem 13: Mandelbrot Set

EN Page 28 of 41

Problem 13: Mandelbrot Set

Points: 45

Problem Background

The Mandelbrot set is drawn by considering the recursive function 𝑍𝑛+1 = 𝑍𝑛 2 + 𝑐,

where 𝑐 is a complex number of the form 𝑎 + 𝑏𝑖 (in mathematics, 𝑖 is an imaginary

number with the value of √−1; thus, 𝑖2 = −1). By iterating repeatedly, using each value

of 𝑍 to calculate the next value, we find that for some input values of 𝑐, 𝑍 grows without

bound. For others, 𝑍 remains bound.

To draw the Mandelbrot set, we use the “complex plane”, where the horizontal x-axis

represents the value of 𝑎, and the vertical y-axis represents the value of 𝑏. Each point is

colored based on the number of iterations (𝑛) we can perform before the absolute value

of 𝑍 (|𝑍𝑛 |) becomes greater than a specified value. When this happens, it is said that

the function “diverges”. In the image below, black indicates that |𝑍𝑛 | remained below a

prescribed value for all values of 𝑛. Blue pixels represent points at which it took many

iterations to get |𝑍𝑛| above that value; red pixels required fewer iterations.

Problem 13: Mandelbrot Set

Page 29 of 41

EN

Let’s consider the function using a value of 𝑐 = 1.1 + 2𝑖.

Regardless of the value of 𝑐, the value of 𝑍0 always equals 0. We can use this to

determine the value of 𝑍1:

𝑍1 = 𝑍02 + 𝑐

𝑍1 = 02 + 1.1 + 2𝑖
𝑍1 = 1.1 + 2𝑖

From this, we can see that for any value of 𝑐, 𝑍1 = 𝑐. Now we need to determine if the

function has diverged. For the purposes of this problem, we’ll consider the function to

have diverged if |𝑍𝑛 | ≥ 100. Since 𝑖 is an imaginary number, we use this formula to

determine the absolute value of numbers of the form 𝑎 + 𝑏𝑖:

|𝑍 | = √𝑎 2 + 𝑏 2
1 1 1

|𝑍1| = √1.12 + 22

|𝑍1| = √1.21 + 4
|𝑍1| ≈ 2.2825

2.2825 is less than 100, so the function hasn’t diverged yet. We need to do more

iterations to determine when it diverges, if ever:

𝑍2 = 𝑍12 + 𝑐

𝑍2 = (𝑎1 + 𝑏1𝑖)2 + 𝑎0 + 𝑏0𝑖

𝑍2 = (1.1 + 2𝑖)2 + 1.1 + 2𝑖

𝑍2 = 1.12 + 1.1(2𝑖) + 1.1(2𝑖) + (2𝑖)2 + 1.1 + 2𝑖

𝑍2 = 1.21 + 4.4𝑖 − 4 + 1.1 + 2𝑖
𝑍2 = −1.69 + 6.4𝑖

𝑎2 = −1.69

𝑏2 = 6.4

|𝑍2| = √−1.692 + 6.42

|𝑍2| ≈ √2.8561 + 40.96
|𝑍2| ≈ 6.6194

(Remember that 𝑖2 = −1, so above, (2𝑖)2 = 22 ∗ 𝑖2 = 4 ∗ −1 = −4.)

|𝑍2 | is still less than 100, so it hasn’t diverged yet. How many iterations do we need to

do to reach that point?

n Z a b |Z|

1 1.1 + 2i 1.1 2 2.2825

2 -1.69 + 6.4i -1.69 6.4 6.6194

3 -37.0039 - 19.632i -37.0039 -19.632 41.8892

4 984.9732 + 1454.9211i 984.9732 1454.9211 1756.9769

Problem 13: Mandelbrot Set

EN Page 30 of 41

So at 𝑛 = 4, we see that the value of |𝑍| > 100. This means that for this value of 𝑐, the

function has diverged at 4. We color the point at x = 1.1, y = 2 an appropriate color for

that value, and move on to the next value of 𝑐 to be checked.

Problem Description

Your program must identify the color to use in a rendering of the Mandelbrot set for a

given value of 𝑐. Use the following table and the explanation above to determine what

colors should be used:

Value of 𝑛 when function diverges Color

≤ 10 RED

11-20 ORANGE

21-30 YELLOW

31-40 GREEN

41-50 BLUE

≥ 51 BLACK

For the example calculation above, the function diverged at 𝑛 = 4, so the color for that

value of 𝑐 should be red.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include a single line of input with two decimal numbers separated by spaces. These

numbers represent the values for 𝑎 and 𝑏, respectively. Remember that 𝑐 = 𝑎 + 𝑏𝑖.

4
1.1 2.0

-0.7 0.2

-0.5 0.65
-0.5 0.608

Sample Output

For each test case, your program must output the value of 𝑐, followed by a space,

followed by the color used to render that value of 𝑐 according to the table above. The

color should be printed in uppercase letters. Decimal values should be printed as they

were received from the input.

1.1 +2.0i RED
-0.7+0.2i BLACK

-0.5+0.65i ORANGE

-0.5+0.608i BLUE

Problem 14: Network Ranger

Page 31 of 41

EN

Problem 14: Network Ranger

Points: 50

Problem Background

How is the internet like the post office? They both use addresses!

Computers and other devices that connect to the internet are assigned an Internet

Protocol (IP) address when they connect. While a newer format is available, most

systems still use the IPv4 format for these addresses. In this format, an IP address

consists of four numbers, separated by periods. Each number can range from 0 to 255.

For example, the address 127.0.0.1 always represents your own computer (the

“localhost”).

As with any other piece of data, your computer stores these addresses in a binary

format. Each number in the address is represented by an eight-bit binary string of 0’s

and 1’s; these strings are concatenated with each other to form the full address. For

example, the IP address 166.23.250.209 is converted as:

166 23 250 209

1 0 1 0 0 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 0 1 0 0 0 1

Just like mailing addresses can be grouped by a ZIP code or postal code, IP addresses

can be grouped by blocks. Internet companies can reserve these blocks to use in

assigning IP addresses to their customers, through a system called Classless Inter-

Domain Routing (CIDR). A CIDR block is defined by writing an IP address followed by a

slash and the number of bits that match between all members of the block (on the left

side of each address). For example, the IP addresses 192.168.0.0 and 192.168.108.68

are represented as the following binary numbers:

192 168 0 0

1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

192 168 108 65

1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1

The first 17 bits of both addresses are the same, so these addresses are part of the

192.168.0.0/17 block (any further matches after the first mismatch aren’t counted). This

could also be written as the 192.168.108.65/17 block, but the convention is to use the

first (smallest) address in a block when writing it out in this manner.

Problem 14: Network Ranger

EN Page 32 of 41

Blocks can be any size from /0 to /32. A /32 block would require that all 32 bits match;

this represents a single address. A /0 block wouldn’t require that any bits match; this

represents the entire internet!

For this problem, you are working with the FBI’s cyber crimes division to track down a

ring of internet scammers using ransomware to attack innocent people. You’ve been

able to track down a list of IP addresses used by the scammers. The FBI wants to get a

search warrant to figure out who is behind these IP addresses, but a judge won’t issue

the warrant unless you can identify the smallest possible range that covers all of those

addresses.

Problem Description

Your program will be given a list of IPv4 addresses and must identify the smallest CIDR

block that contains every address. Each CIDR block should be written using the first

(smallest) address within the block; that is, 192.168.0.0/16 may be an acceptable

answer, but 192.168.0.1/16 is not.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include the following lines of input:

• A line containing a single positive integer, X, indicating the number of IP

addresses used in this test case

• X lines, each containing a single IPv4 address

2

2

192.168.0.0

192.168.255.255
4

32.73.94.16

32.73.89.172

32.73.95.210

32.73.92.82

Sample Output

For each test case, your program must output the smallest CIDR range that contains

every listed IP address, using the format described above.

192.168.0.0/16

32.73.88.0/21

Problem 15: Hide Your Spies

Page 33 of 41

EN

Problem 15: Hide Your Spies

Points: 55

Problem Background

You’re working with an intelligence agency to guide a spy through a secret enemy

installation. The enemy has cameras positioned throughout the building with a 360° field

of view; if your spy is caught on camera, the mission will fail! Fortunately, there are a

number of walls blocking the view of the cameras that your spy can hide behind. You

need to be able to determine if your spies will be seen based on the position of the

cameras, spies, and the walls in the room.

Problem Description

Your mission, should you choose to accept it, is to determine if there is a clear line of

sight from a camera at a given set of (𝑥, 𝑦) coordinates to a spy located at a different set

of coordinates. Several walls will be positioned throughout the room; if a wall intersects

a line drawn between the camera and the spy, the spy is hidden and avoids detection.

You must write a program that checks if the spy is successfully hidden and reports if he

has been detected or not.

The wall’s line doesn’t intersect the line

between the spy and the camera. The

spy is detected!

The wall is between the camera and the

spy, intersecting that line. The spy

remains hidden.

Problem 15: Hide Your Spies

EN Page 34 of 41

To determine if two lines intersect, you’ll need to locate the point at which the lines

would intersect if they were continued infinitely in both directions. Remember that a

(non-vertical) line can be defined using the equation

𝑦 = 𝑎𝑥 + 𝑐

𝑎 is known as the “slope” of the line, and can be calculated from any two points (𝑥1, 𝑦1)
and (𝑥2, 𝑦2) as follows:

𝑎 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1

(If 𝑥2 − 𝑥1 = 0, then 𝑎 is undefined, and the line is vertical.) Once you know 𝑎, you can

calculate 𝑐 using it and the (𝑥, 𝑦) coordinates of one of the points on the line:

𝑐 = 𝑦 − 𝑎𝑥

Complete this process for the two lines you’re trying to check for intersection to obtain

both of their line equations. You can then use both equations to calculate the (𝑥, 𝑦) point

at which the lines would intersect. If this point is within the bounds of the points you

already knew about, then the wall is blocking the camera’s line of sight!

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include the following lines of input:

• A line containing five integers separated by spaces, representing the following

information, in order:

o The X-coordinate of the spy within the current room
o The Y-coordinate of the spy within the current room
o The X-coordinate of the camera within the current room

o The Y-coordinate of the camera within the current room
o The number of walls in the current room, W

• W lines containing four integers separated by spaces, each line representing

information about a wall within the room:

o The X-coordinate of the start of the wall

o The Y-coordinate of the start of the wall

o The X-coordinate of the end of the wall
o The Y-coordinate of the end of the wall

2

2 2 6 4 1

2 5 5 5

Problem 15: Hide Your Spies

Page 35 of 58 EN

2 2 6 4 2

4 1 4 5

1 5 4 5

Sample Output

For each test case, your program must output a single line containing either the word

“YES” (indicating that the spy was seen by the camera) or “NO” (if the spy evaded

detection).

YES

NO

Problem 16: Evacuate!

EN Page 36 of 41

Problem 16: Evacuate!

Points: 70

Problem Background

It’s your first day working at as a software engineer.

You’ve finished your orientation and are at your new

desk, ready to start work when…

BEEP! … BEEP! … BEEP!

It’s the fire alarm! You’re not familiar with the

building yet and don’t know where to go!

Fortunately, your coworkers help you get outside

safely, and it was just a fire drill anyway, but the

experience gives you an idea. What if you had an

app on your phone that could guide you to the nearest exit? You present the idea to

your manager, and they agree to start the project!

Problem Description

Your program will read in an image of a building’s floor plan and must find the shortest

route to the outside of the building from the given start position. While searching for the

shortest path, you may travel in any cardinal direction - up, down, left, or right. You may

not move diagonally, nor through walls. In the event that multiple paths are tied for the

shortest length, take the path that exits closest to the top-left corner of the map. While

the map will be rectangular (or square), the building’s layout may not be.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include the following lines of input:

• A line containing two integers separated by spaces:

o The first integer represents the width of the map, W

o The second integer represents the height of the map, H

• A total of H lines, each up to W characters long, containing the map of the

building.

o A # (hashtag) character represents a wall of the building.

Problem 16: Evacuate!

Page 37 of 41

EN

2

10 10

o A space indicates an empty navigable hallway or room.
o A lowercase letter o represents your start position within the building.

o An uppercase letter X represents an exit from the building.
o Lines may be shorter than W characters; any “missing” characters will be

outside the building and should have no bearing on your work. Remember

not to print any trailing whitespace in your output.

########X#
X ## #

#o# # # #

X

X ##
######X###

30 20

##X###############

#o##### #

##################X###########

Problem 16: Evacuate!

EN Page 38 of 41

Sample Output

For each test case, your program must output the original map of the building, with the

shortest path marked using periods (.) in place of the spaces presented above.

########X#
X ## #

#...# ## #

#.#.# ## #

#o#.# # #

###.. # ##

####.## X

X ... ##

######X###

##X###############

##....... ####

##.#### #

##.# ### #

##.# # ### #

...# #

##.#######

##. ###
######. #

####.....# #

####.##### #

#######.# #############

#.###### #

#....... ########## #

#####.## #

#.....# ##########

#o##### #

##################X###########

Problem 17: Sudoku

Page 39 of 41

EN

Problem 17: Sudoku

Points: 80

Problem Background

Sudoku is a popular logic puzzle commonly found

in newspapers, magazines, and online. Most

likely originating in Indiana in 1979, the puzzle

format found great popularity in Japan in the

1980s and became a worldwide phenomenon in

the new millennium. Newspapers in particular

contributed to the puzzle’s establishment as a

household name due to the puzzle’s similarities

with crossword puzzles.

Sudoku is played on a 9-by-9 grid of squares

divided into 3-by-3 subgrids. Each square is filled

in with one of the numbers from 1 to 9 inclusive,

such that in the final solution any given digit

appears exactly once within its row, column, and

subgrid. The original puzzle is mostly blank, with only some numbers pre-filled as hints.

The player must use these hints to determine how to fill in the remaining squares

through process of elimination, logical deduction, and trial and error. In the image

above, the bold black numbers are the original hints given by the puzzle; the italic red

numbers are those filled in by the player to produce the solution. In order to be a

“proper” Sudoku puzzle, a given set of hints must have one unique solution.

The properties of Sudoku puzzles have lent it to a great deal of study by

mathematicians and computer scientists. Considerable research has been put into

finding the minimum number of clues that can be given while still producing a unique

solution (17), and into finding puzzles that follow certain patterns. Solving Sudoku

puzzles efficiently is a somewhat difficult task in computer science; it falls into the

category of problems known as “NP-complete.” This means that it is believed that no

algorithm exists that can solve a Sudoku puzzle in less than polynominal time (without

having loops nested at least two deep).

Problem Description

You will need to write a program that can read a Sudoku puzzle and find its solution.

Remember, to solve a Sudoku puzzle, you must fill in all the blank squares with a

4 6 2 5 7 1 8 3 9

9 1 3 4 6 8 5 7 2

7 5 8 9 2 3 1 4 6

1 9 4 7 5 6 2 8 3

8 2 7 3 4 9 6 5 1

6 3 5 8 1 2 4 9 7

5 4 1 6 9 7 3 2 8

2 8 9 1 3 4 7 6 5

3 7 6 2 8 5 9 1 4

Problem 17: Sudoku

EN Page 40 of 41

number between 1 and 9 inclusive, such that each number appears exactly once in

each row, column, and 3-by-3 subgrid.

All of the puzzles your program will be given will be “proper” Sudoku puzzles; as stated

above, this means that each puzzle will have exactly one valid solution.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include nine lines of text. Each line will contain only the digits from 1 through 9 inclusive

and underscores (_). Underscores represent blank spaces in the puzzle that must be

filled. Digits represent hints that should remain in place in the final solution.

2

4_2

 6

_589
9 5 8

 34 51

 16 32_
_8_1

3_62 9_4

 16 52
_7_5_4 6

39

62 39_

 6_

9 3

_5_71_94_

2 6 5_7

Sample Output

For each test case, your program must output the solved Sudoku puzzle, printing nine

lines with nine digits per line.

462571839

913468572

758923146

194756283
827349651

Problem 17: Sudoku

Page 41 of 41

EN

635812497

541697328

289134765
376285914

568327419

439168752

172594836
394286175

625471398

781953264

947835621
856712943

213649587

